7 Absorsor Dinâmico de Vibrações Híbrido

Observa-se nos resultados até aqui apresentados, que o absorsor dinâmico de vibrações passivo (pêndulo absorsor) mostra-se eficiente para uma faixa de freqüência de excitação em torno da freqüência natural da coluna, para qual foi calibrado. Para torres esbeltas o absorsor é mais eficiente quando $\omega_c \approx \omega_p \approx \omega_e$, permitindo algumas variações no valor da freqüência de excitação na vizinhança desse ponto. Para aumentar a sua eficiência, é necessário expandir a faixa de freqüência de excitação para o qual o absorsor pendular atua, sem comprometer o comportamento da estrutura principal.

Então, é proposto um absorsor dinâmico de vibrações híbrido. Esse consiste na junção do absorsor pendular (controle passivo) com uma força de controle ativo, atuador. A força de controle é aplicada diretamente na estrutura principal, no sentido contrário à força de excitação. A força de controle proposta é dada, em sua forma adimensional, por:

$$Fc = f \tanh(\beta \zeta \zeta, \zeta) \zeta \tag{7.1}$$

onde f é a magnitude da força de controle e β é um parâmetro de controle, sendo função do deslocamento e da velocidade no topo da torre.

Essa força de controle é recalculada a todo instante, para isso é necessário que na estrutura principal sejam instalados dispositivos que meçam a todo instante os seus deslocamentos e suas velocidades para que seja realimentado o atuador.

Para ilustrar o comportamento da força de controle, mostra-se na Figura 7.1 a variação da função $\tanh(\beta x)$ para diferentes valores de β . Observa-se que o fator β define a velocidade de aplicação da força de controle. Forças dessa natureza podem ser obtidas através de vários mecanismos, como comentam Winthrop *et al.* (2005) e Nagarajaiah & Varadarajan (2005).

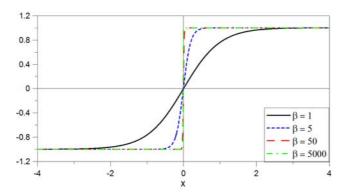


Figura 7.1: Comportamento da função $\tanh(\beta x)$.

Uma vez considerada essa força de controle agindo no sistema, têm-se que as equações de estado (4.14) tomam a forma:

$$\dot{y}_{1} = y_{2} \qquad (7.2a)$$

$$\dot{y}_{2} = \left[\zeta_{s} \left(\frac{\omega_{s}}{\omega_{e}}\right)^{2} \operatorname{sen}(\tau) - f \tanh(\beta y_{1} y_{2}) y_{1} - 2\xi_{s} \frac{\omega_{s}}{\omega_{e}} y_{2} - \left(\frac{\omega_{s}}{\omega_{e}}\right)^{2} y_{1} \right] \qquad (7.2b)$$

$$- \mu \dot{y}_{4} \cos(y_{3}) + \mu y_{4}^{2} \sin(y_{3}) / (1 + \mu)$$

$$\dot{y}_{3} = y_{4} \qquad (7.2c)$$

$$\dot{y}_{4} = -2\xi_{p} \frac{\omega_{p}}{\omega_{e}} y_{4} - \dot{y}_{2} \cos(y_{3}) - \left(\frac{\omega_{p}}{\omega_{e}}\right)^{2} \sin(y_{3}) \qquad (7.2d)$$

Para conhecer o comportamento do sistema com ação dessa força de controle, é feito um estudo do comportamento das amplitudes do sistema original e do sistema com controle, bem como das amplitudes do absorsor pendular e da força de controle. Para mostrar o comportamento do sistema adotou-se em (7.2) que f = 1.00 e $\beta = 6000$, sendo que os demais parâmetros adotados são os mesmo apresentados no item 5.1. Na Figura 7.2 observa-se o comportamento dos deslocamentos da coluna sem controle, da coluna com controle, do absorsor pendular e da força de controle.

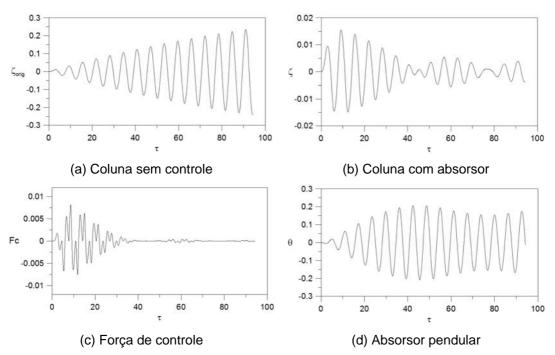


Figura 7.2: Comportamento das amplitudes do sistema e da força de controle.

Observa-se que a força de controle atua quando o absorsor pendular começa a se mover. Após o mesmo atingir as amplitudes necessárias para controlar as oscilações da coluna, as amplitudes da força de controle diminuem significativamente.

Nas Figuras 7.3 e 7.4 mostra-se uma comparação do comportamento das amplitudes de deslocamento da coluna e do pêndulo, respectivamente, para o sistema coluna-pêndulo sem a força de controle em relação ao sistema com a força de controle. Os resultados foram obtidos para $\omega_e/\omega_c=0.8991$, resultando em $\omega_e=1.128765\,\mathrm{rad/s}$. Esse ponto coincide com o ponto onde o sistema coluna-pêndulo atinge a amplitude máxima (primeira ressonância). Como pode-se observar, o controle híbrido praticamente anulou as oscilações nessa região. Assim, mostra-se ter um controle bem mais eficiente que o passivo, mas sem um grande gasto de energia.

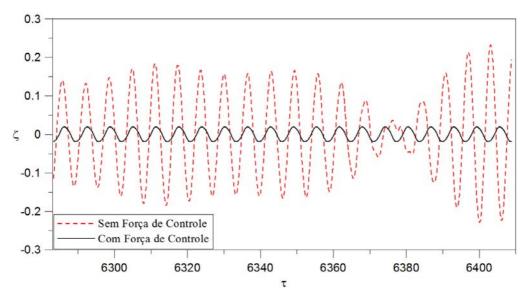


Figura 7.3: Comparação das amplitudes de deslocamento da coluna, sem e com a força de controle.

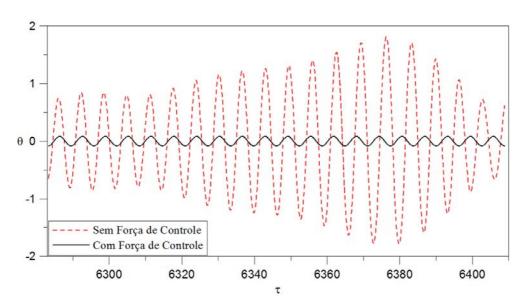


Figura 7.4: Comparação das amplitudes de deslocamento angular do pêndulo, sem e com a força de controle.

7.1. Comportamento do Sistema em Função dos Parâmetros da Força de Controle

Inicialmente, adotou-se um β fixo e variou-se f . A seguir, adotou-se um valor de f e alterou-se β .

7.1.1. Influência do parâmetro f

Para variar o parâmetro f é fixada a magnitude de β em 60. A Tabela 7.1 mostra a influência do parâmetro f no comportamento das amplitudes máximas de deslocamento, velocidade e aceleração da coluna. Observa-se que, a medida que aumenta-se o parâmetro f, o controle híbrido de vibrações torna-se mais eficiente. Entretanto este ganho não é acentuado, o que é um aspecto atraente em tratando-se de um mecanismo de controle ativo. Isso quer dizer que pode-se adotar uma força de pequena magnitude, o que acarreta em um menor dispêndio de energia.

Tabela 7.1: Influência do parâmetro f nas amplitudes máximas da coluna na resposta total.

f	ζ (máximo)	ζ,, (máximo)	ζ, _π (máximo)
0.00	0.033235	0.032756	0.033245
0.20	0.032916	0.032499	0.032922
0.40	0.032609	0.032249	0.032623
0.60	0.032311	0.032006	0.032331
0.80	0.032024	0.031770	0.032047
1.00	0.031746	0.031539	0.031771
1.20	0.031476	0.031315	0.031510
1.40	0.031215	0.031096	0.031270
1.60	0.030961	0.030882	0.031036
1.80	0.030716	0.030674	0.030808
2.00	0.030480	0.030471	0.030585
2.20	0.030250	0.030272	0.030367
2.40	0.030027	0.030078	0.030154
2.60	0.029810	0.029888	0.029954

A Tabela 7.2 mostra a influência da variação de f no comportamento das amplitudes máximas da coluna na resposta permanente. Nota-se que as magnitudes das amplitudes máximas da coluna na resposta permanente não sofrem alterações nos seus valores com o aumento do parâmetro f. Isso se

explica, como mostrado anteriormente, pelo fato do pêndulo ser o responsável pelo controle das vibrações nessa fase, sendo a força de controle externa praticamente nula.

Tabela 7.2: Influência do parâmetro $\,f\,$ nas amplitudes máximas da coluna na resposta permanente.

f	ζ (máximo)	ζ ,, (máximo)	ζ, _{ττ} (máximo)
0.00	0.000682	0.000727	0.000617
0.20	0.000682	0.000727	0.000617
0.40	0.000682	0.000727	0.000617
0.60	0.000682	0.000727	0.000617
0.80	0.000682	0.000727	0.000617
1.00	0.000682	0.000727	0.000617
1.20	0.000682	0.000727	0.000617
1.40	0.000682	0.000727	0.000617
1.60	0.000682	0.000727	0.000617
1.80	0.000682	0.000727	0.000617
2.00	0.000682	0.000727	0.000617
2.20	0.000682	0.000727	0.000617
2.40	0.000682	0.000727	0.000617
2.60	0.000682	0.000727	0.000617

Na Figura 7.5 ilustra-se a variação das amplitudes de deslocamento da coluna no tempo para alguns valores de f. Como nota-se nos resultados, acontecem apenas pequenas variações nas amplitudes da coluna, sendo essas variações para as amplitudes atingidas no início da resposta do sistema (fase transiente).

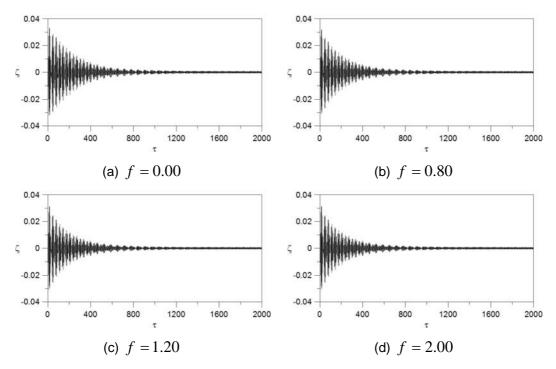


Figura 7.5: Comportamento das amplitudes de deslocamento da coluna no tempo variando $\,f\,$.

Tabela 7.3: Influência do parâmetro $\,f\,$ nas amplitudes máximas do pêndulo na resposta total.

f	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _{ττ} (máximo)
0.00	0.333699	0.334775	0.331375
0.20	0.330619	0.331611	0.328299
0.40	0.327712	0.328618	0.325396
0.60	0.324963	0.325782	0.322648
0.80	0.322356	0.323088	0.320042
1.00	0.319880	0.320525	0.317566
1.20	0.317524	0.318080	0.315208
1.40	0.315277	0.315746	0.312960
1.60	0.313131	0.313514	0.310813
1.80	0.311078	0.311375	0.308759
2.00	0.309113	0.309324	0.306791
2.20	0.307224	0.307350	0.304900
2.40	0.305415	0.305459	0.303090
2.60	0.303673	0.303634	0.301346

Tabela 7.4: Influência do parâmetro $\,f\,$ nas amplitudes máximas do pêndulo na resposta permanente.

f	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _π (máximo)
0.00	0.176322	0.176489	0.175989
0.20	0.176322	0.176489	0.175989
0.40	0.176322	0.176489	0.175989
0.60	0.176322	0.176489	0.175989
0.80	0.176322	0.176489	0.175989
1.00	0.176322	0.176489	0.175989
1.20	0.176322	0.176489	0.175989
1.40	0.176322	0.176489	0.175989
1.60	0.176322	0.176489	0.175989
1.80	0.176322	0.176489	0.175989
2.00	0.176322	0.176489	0.175989
2.20	0.176322	0.176489	0.175989
2.40	0.176322	0.176489	0.175989
2.60	0.176322	0.176489	0.175989

Nas Tabelas 7.3 e 7.4 mostra-se o comportamento das amplitudes máximas do pêndulo na resposta total e permanente, respectivamente. Nota-se que as amplitudes máximas do pêndulo diminuem com o aumento do parâmetro f, já as amplitudes máximas no estado permanente não sofrem alterações com o aumento de f.

A Figura 7.6 apresenta a variação do deslocamento angular do pêndulo ao longo do tempo, para alguns valores de f.

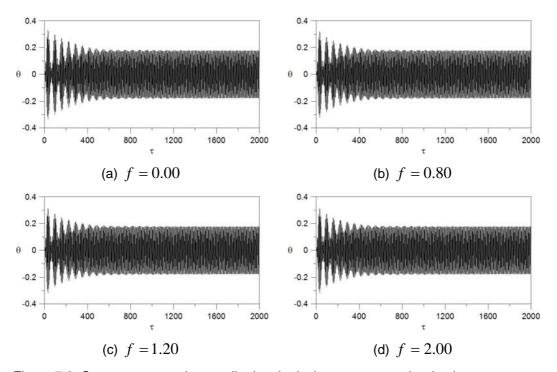


Figura 7.6: Comportamento das amplitudes de deslocamento angular do absorsor pendular no tempo variando $\,f\,$.

7.1.2. Influência do parâmetro β

Para variar o parâmetro β é fixado o parâmetro f com magnitude igual a 1.00. Nas Tabelas 7.5 e 7.6 mostra-se o comportamento das amplitudes máximas de deslocamento, velocidade e aceleração da coluna na resposta total e permanente do sistema, respectivamente.

Tabela 7.5: Influência do parâmetro $\,eta\,$ nas amplitudes máximas da coluna na resposta total.

β	ζ (máximo)	ζ,, (máximo)	ζ, _{ττ} (máximo)
0.00	0.033235	0.032756	0.033245
6.00	0.033074	0.032627	0.033075
60.0	0.031746	0.031539	0.031771
600.0	0.025490	0.025113	0.026036
6000.0	0.015469	0.016007	0.018705
60000.0	0.009689	0.010928	0.016703

Tabela 7.6: Influência do parâmetro	β	nas amplitudes máximas da colu	ına na resposta
permanente.			

β	ζ (máximo)	ζ,, (máximo)	ζ, _π (máximo)
0.00	0.000682	0.000727	0.000617
6.00	0.000682	0.000727	0.000617
60.0	0.000682	0.000727	0.000617
600.0	0.000682	0.000727	0.000617
6000.0	0.000682	0.000727	0.000617
60000.0	0.000682	0.000727	0.000617

Observa-se que as amplitudes da coluna na resposta total melhoram bastante, ou seja, diminuem de forma significativa com o aumento do parâmetro β , já as amplitudes da coluna na resposta permanente não se alteram.

A Figura 7.7 mostra a variação do deslocamento da coluna no tempo, para alguns valores de β .

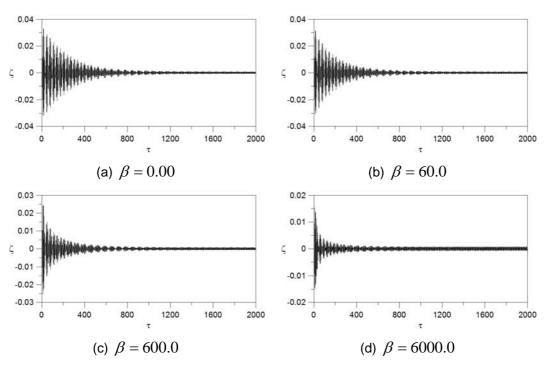


Figura 7.7: Comportamento das amplitudes de deslocamento da coluna no tempo variando $\, eta \, . \,$

Nota-se que, na medida que se aumenta o parâmetro β , a coluna tende a chegar mais rapidamente a sua fase permanente.

A seguir, mostra-se o comportamento das amplitudes do absorsor pendular com a variação do parâmetro β . As Tabelas 7.7 e 7.8 mostram o comportamento das amplitudes máximas do pêndulo na resposta total e permanente do sistema, respectivamente.

Tabela 7.7: Influência do parâmetro $\,eta\,$ nas amplitudes máximas do pêndulo na resposta total.

β	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	$\theta_{,\tau\tau}$ (máximo)
0.00	0.333699	0.334775	0.331375
6.00	0.332135	0.333170	0.329815
60.0	0.319880	0.320524	0.317566
600.0	0.265315	0.264634	0.263003
6000.0	0.207974	0.208279	0.208295
60000.0	0.184697	0.185256	0.185301

Tabela 7.8: Influência do parâmetro $\,eta\,$ nas amplitudes máximas do pêndulo na resposta permanente.

β	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _{ττ} (máximo)
0.00	0.176322	0.176489	0.175989
6.00	0.176322	0.176489	0.175989
60.0	0.176322	0.176489	0.175989
600.0	0.176322	0.176489	0.175989
6000.0	0.176321	0.176488	0.175988
60000.0	0.176315	0.176482	0.175982

Nota-se um significativo decréscimo nas amplitudes do pêndulo na resposta total, ou seja, houve redução das amplitudes do pêndulo na medida em que aumentou-se β . A Figura 7.8 ilustra o comportamento do pêndulo ao longo do tempo, para diferentes valores de β . Essas reduções ocorrem, como visto na Tabela 7.7, durante a resposta transiente, enquanto está ativo o atuador.

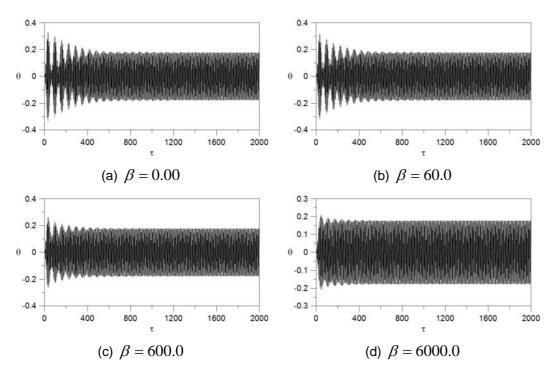


Figura 7.8: Comportamento das amplitudes de deslocamento angular do absorsor pendular no tempo variando β .

Como mostrado, o parâmetro β controla a velocidade da força de controle. Tem-se, ainda, que quanto maior o valor de β maior é quantidade de energia que a força de controle requer. Na literatura em geral usa-se a função $\operatorname{sign}(x)$ que representa uma mudança brusca e instantânea da força de controle em x=0 (Winthrop *et al.*, 2005). A função proposta neste trabalho, $\tanh(\beta x)$, apresenta um comportamento mais suave e mais fácil de ser obtido na prática. O comportamento da função $\operatorname{sign}(x)$ é mostrado na Figura 7.9.

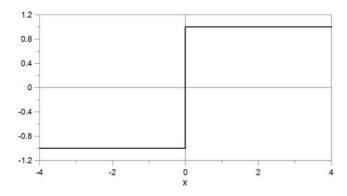


Figura 7.9: Comportamento da função sign(x).

7.2. Comportamento do Sistema Considerando Defasagem no Cálculo da Força de Controle

Investiga-se, agora, o comportamento do absorsor dinâmico de vibrações híbrido no controle de vibrações da estrutura principal considerando que força de controle tem uma defasagem no tempo, ou seja, o cálculo da força de controle não é mais feito com os deslocamentos e velocidades de cada instante e sim com deslocamentos e velocidades medidos em instantes anteriores.

A defasagem para calcular a força de controle é baseada no período de oscilação do sistema, ou seja, uma defasagem de 5.00% significa 5% do período do sistema. Nessa análise adota-se f=1.00 e $\beta=6000$. Nas Tabelas 7.9 e 7.10 observa-se a influência da defasagem nas amplitudes máximas da coluna durante a resposta total e permanente, respectivamente.

Tabela 7.9: Influência da defasagem nas amplitudes máximas da coluna na resposta total para $\,f=1.00\,$ e $\,\beta=6000\,$.

Defasagem (%)	ζ (máximo)	$\zeta_{,\tau}$ (máximo)	$\zeta,_{\pi}$ (máximo)
0.00	0.015469	0.016007	0.018705
5.00	0.015901	0.015283	0.022131
10.0	0.017010	0.015386	0.024899
15.0	0.019354	0.022520	0.028044
20.0	0.022849	0.0321433	0.033540
23.0	18.320434	28.965204	37.726468

Tabela 7.10: Influência da defasagem nas amplitudes máximas da coluna na resposta permanente para f=1.00 e $\beta=6000$.

Defasagem (%)	ζ (máximo)	ζ,, (máximo)	ζ , _{π} (máximo)
0.00	0.000682	0.000727	0.000617
5.00	0.000682	0.000727	0.000617
10.0	0.000682	0.000727	0.000617
15.0	0.000682	0.000727	0.000618
20.0	0.000681	0.000727	0.000618
23.0	6.291596	9.543803	19.750983

Já o comportamento das amplitudes do pêndulo na resposta total e permanente está ilustrado nas Tabela 7.11 e 7.12, respectivamente.

Tabela 7.11: Influência da defasagem nas amplitudes máximas do pêndulo na resposta total para f=1.00 e $\beta=6000$.

Defasagem (%)	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _{ττ} (máximo)
0.00	0.207974	0.208279	0.208295
5.00	0.206345	0.205290	0.204021
10.0	0.208071	0.205788	0.201988
15.0	0.219752	0.216193	0.211272
20.0	0.242929	0.241386	0.238837
23.0	105864.620464	18.713047	30.431517

Tabela 7.12: Influência da defasagem nas amplitudes máximas do pêndulo na resposta permanente para f=1.00 e $\beta=6000$.

Defasagem (%)	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _π (máximo)
0.00	0.176321	0.176488	0.175988
5.00	0.176319	0.176486	0.175986
10.0	0.176315	0.176482	0.175982
15.0	0.176312	0.176479	0.175978
20.0	0.176310	0.176478	0.175977
23.0	105864.620464	18.032139	13.696515

Os resultados mostram que, quando a defasagem passa de 20.0% do período, o sistema torna-se instável.

Tendo em vista esse resultado, resolveu-se investigar o efeito de β na estabilidade do sistema de controle híbrido. Inicialmente considerou-se f=1.00 e $\beta=60$. Os resultados são apresentados nas Tabelas 7.13 e 7.14 para, respectivamente, as amplitudes máximas da coluna durante a resposta total e permanente. Já o comportamento das amplitudes do pêndulo na resposta total e permanente está ilustrado nas Tabelas 7.15 e 7.16, respectivamente. Nesse caso, variou-se a defasagem até 200% do período da coluna. Verifica-se que o sistema

permanece estável ocorrendo apenas pequenas variações nos valores extremos a medida que a defasagem aumenta.

Tabela 7.13: Influência da defasagem nas amplitudes máximas da coluna na resposta total para $\,f=1.00\,$ e $\,\beta=60\,$.

Defasagem (%)	ζ (máximo)	ζ,, (máximo)	ζ, _{ττ} (máximo)
0.00	0.031746	0.031539	0.031771
20.00	0.032688	0.032573	0.032852
40.00	0.034166	0.033685	0.034957
60.00	0.033921	0.033686	0.033245
80.00	0.033076	0.032413	0.033016
100.00	0.032791	0.032544	0.032876
120.00	0.033154	0.032798	0.033270
150.00	0.033358	0.032784	0.033359
200.00	0.033220	0.032755	0.033232

Tabela 7.14: Influência da defasagem nas amplitudes máximas da coluna na resposta permanente para $\,f=1.00\,$ e $\,\beta=60\,$.

Defasagem (%)	ζ (máximo)	ζ_{τ} (máximo)	ζ ,, (máximo)
0.00	0.000681	0.000727	0.000617
20.00	0.000681	0.000727	0.000617
40.00	0.000681	0.000727	0.000617
60.00	0.000681	0.000727	0.000617
80.00	0.000681	0.000727	0.000617
100.00	0.000681	0.000727	0.000617
120.00	0.000681	0.000727	0.000617
150.00	0.000681	0.000727	0.000617
200.00	0.000681	0.000727	0.000617

Tabela 7.15: Influência da defasagem nas amplitudes máximas do pêndulo na resposta total para f=1.00 e $\beta=60$.

Defasagem (%)	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _{ττ} (máximo)
0.00	0.319880	0.320524	0.317566
20.00	0.326190	0.327535	0.323897
40.00	0.346123	0.347489	0.344258
60.00	0.348622	0.348620	0.345859
80.00	0.329743	0.329994	0.326568
100.00	0.319804	0.321733	0.317728
120.00	0.329758	0.332263	0.329182
150.00	0.345766	0.345107	0.343614
200.00	0.325997	0.328136	0.324017

Tabela 7.16: Influência da defasagem nas amplitudes máximas do pêndulo na resposta permanente para f=1.00 e $\beta=60$.

Defasagem (%)	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _π (máximo)
0.00	0.176322	0.176489	0.175988
20.00	0.176322	0.176489	0.175988
40.00	0.176322	0.176489	0.175988
60.00	0.176322	0.176489	0.175989
80.00	0.176322	0.176489	0.175989
100.00	0.176322	0.176489	0.175988
120.00	0.176322	0.176489	0.175988
150.00	0.176322	0.176489	0.175988
200.00	0.176322	0.176489	0.175988

Com base nesses resultados, estudou-se a variação do valor crítico de β em função da defasagem. Os resultados estão apresentados na Figura 7.10, onde se mostra a variação da amplitude máxima da coluna na fase transiente em função de β para diversos valores de defasagem (25%, 50%, 75% e 100%). Nota-se que a pior situação (menor β crítico) ocorre para 50% de defasagem, quando a força do controle ativo começa a agir fora de fase. Dos resultados apresentados conclui-se que para valores pequenos de β , ou seja para quando a mudança de sinal da força

de controle é suave, o sistema é sempre estável. Para variações bruscas da força de controle a estabilidade é função da defasagem.

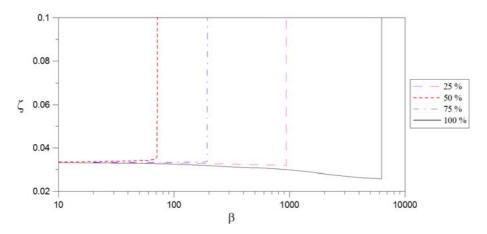


Figura 7.10: Variação da amplitude máxima da coluna em função de $\,eta$.

Fazendo o mesmo estudo para a variação do parâmetro f tem-se os resultados apresentados na Figura 7.11. Onde pode-se observar a variação da amplitude máxima da coluna na fase transiente em função de f para alguns valores de defasagem. Nota-se, novamente, que a pior situação ocorre para 50% de defasagem.

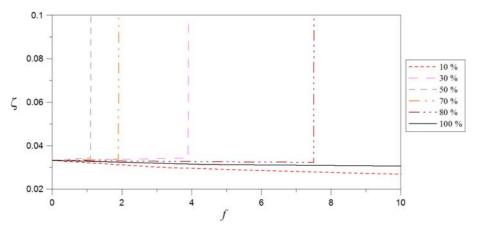


Figura 7.11: Variação da amplitude máxima da coluna em função de f.

7.3. Comportamento do Sistema para um Pulso Retangular

O pulso retangular de curta duração é dado pela Figura 5.24. As amplitudes máximas são calculadas para diferentes pulsos retangulares, ou melhor, são

adotadas diferentes durações para o pulso retangular. A duração de cada pulso retangular é medida em função do período de resposta do sistema (T). Adota-se nesse estudo os parâmetros f=1.00 e $\beta=60$.

Inicialmente, adota-se que a duração do pulso retangular é de um período do sistema e é feita uma avaliação da resposta no tempo. Essa avaliação é apresentada na Figura 7.12.

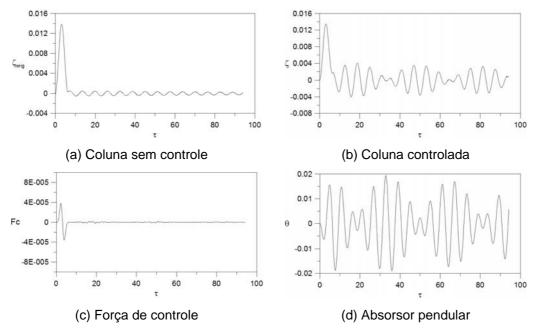


Figura 7.12: Comportamento das amplitudes do sistema com a força de controle para um pulso retangular.

Na Tabela 7.17 observa-se a influência da duração do pulso.

Tabela 7.17: Influência da duração do pulso retangular na resposta da coluna.

ζ (máxim		áximo)	mo) $\zeta_{,\tau}$ (máximo)			ζ ,, (máximo)	
Duração	Sem Controle	Com Controle	Sem Controle	Com Controle	Sem Controle	Com Controle	
1/4 T	0.000434	0.000427	0.000439	0.000439	0.006980	0.006979	
1/2 T	0.000434	0.000427	0.000439	0.000439	0.006980	0.006979	
3/4 T	0.000434	0.000427	0.000439	0.000439	0.006980	0.006979	
T	0.013847	0.013478	0.006923	0.006798	0.006980	0.006979	
5/4 T	0.013847	0.013478	0.006923	0.006798	0.006980	0.006979	
2 T	0.013847	0.013478	0.006923	0.007752	0.006980	0.007821	
5 T	0.013847	0.013478	0.006923	0.012657	0.006980	0.012784	

Nota-se que as amplitudes da coluna original e controlada são semelhantes. A Tabela 7.18 mostra a variação das amplitudes máximas do pêndulo em função da duração do pulso retangular.

Tabela 7.18: Influência da duração do pulso retangular na resposta do pêndulo.

Duração	θ (máximo)	θ_{τ} (máximo)	θ_{τ} (máximo)
1/4 T	0.002079	0.002094	0.006965
1/2 T	0.002079	0.002094	0.006965
3/4 T	0.002079	0.002094	0.006965
T	0.019353	0.020319	0.020274
5/4 T	0.019353	0.020319	0.020274
2 T	0.036373	0.036933	0.037673
5 T	0.060304	0.061100	0.061390

7.4. Comportamento do Sistema para um Pulso com Amplitude Variável

O comportamento do sistema sob o carregamento de um pulso com amplitude variável, é apresentado na seqüência. A força de excitação é dada, na sua forma adimensional, por:

$$F_e(\tau) = \zeta_s \varepsilon_0 \tau \cdot e^{(1 - \varepsilon_0 \tau)} \tag{7.3}$$

onde ε_0 é um parâmetro de controle e ζ_s é a magnitude da força.

A Figura 7.13 demonstra o comportamento dessa força de excitação.

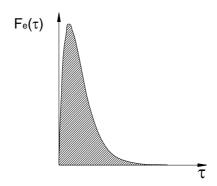


Figura 7.13: Força de excitação da equação (7.3).

A equação (7.3) é apresentada por Korenev & Reznikov (1993) que menciona que esse tipo de força de excitação é usada em projetos, quando são investigadas as vibrações nas construções causadas por explosões, cargas sísmicas, rajadas de vento e cargas de ondas. Essa força atinge o seu valor máximo em $\tau = 1/\varepsilon_0$.

As Tabelas 7.19 e 7.20 ilustram o comportamento das amplitudes máximas durante a resposta total da coluna e do pêndulo, respectivamente, variando-se o parâmetro da força de excitação ε_0 . Para esse tipo de carregamento, ao contrário do pulso retangular, já nota-se o efeito benéfico do controle na resposta da torre, em particular no que se refere às velocidades e acelerações, sendo que a redução de magnitude cresce à medida que ε_0 aumenta.

Tabela 7.19: Influência do parâmetro \mathcal{E}_0 nas amplitudes máximas da coluna.

	ζ (ma	áximo)	ζ,, (m	áximo)	ζ , _{$\tau\tau$} (m	náximo)
${\cal E}_0$	Sem Controle	Com Controle	Sem Controle	Com Controle	Sem Controle	Com Controle
0.5	0.012886	0.012561	0.008477	0.007647	0.007525	0.006902
1.0	0.011178	0.010912	0.009678	0.008959	0.009262	0.008399
1.5	0.009197	0.008996	0.008646	0.008097	0.008473	0.007773
2.0	0.007654	0.007494	0.007414	0.006985	0.007316	0.006925
2.5	0.006483	0.006351	0.006358	0.006014	0.006723	0.006713
3.0	0.005584	0.005477	0.005503	0.005218	0.006807	0.006801

Tabela 7.20: Influência do parâmetro $\,\mathcal{E}_0\,$ nas amplitudes máximas do pêndulo.

$oldsymbol{arepsilon}_0$	θ (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ, _{ττ} (máximo)
0.5	0.035241	0.035537	0.035462
1.0	0.044206	0.044457	0.045025
1.5	0.040907	0.041105	0.041987
2.0	0.035461	0.035648	0.036551
2.5	0.030537	0.030690	0.031547
3.0	0.026486	0.026635	0.027406